

White Paper:

IPv6 How-To
May 2005

 2

White Paper: Push to Talk Technology March 2005

Setup (Figure 1)
Line Color Meaning

Blue IPv4

Green IPv6

Yellow 6-over-4 tunnels

Red Physical connection with IPv4 and
IPv6

Table 1: Network Line Colors and Meanings

Host(s) Description

Whiterabbit Running Red Hat Enterprise Linux 3
with Check Point Provider-1 and has
one ethernet card.

Cheshire Running Microsoft Windows 2000
Server with Service Pack 4 and has

two ethernet cards.

Doormouse Running Red Hat Enterprise Linux 3
and has one ethernet card.

Madhatter Nokia IP330 security appliance
running Nokia IPSO 3.8.1 B028 and
Check Point NGFP4 R55p with an IPv6
license (standalone installation).

Redqueen

Old110

Nokia IP110 security appliances
running Nokia IPSO 3.8.1 B028.

Tweedledee

Tweedledum

Nokia IP120 security appliances
running Nokia IPSO 3.8 B031 and
Check Point NGFP4 R55p.

NSAS Nokia IP440 security appliance
running Nokia IPSO 3.7 B044 and
Nokia Secure Access Systems 3.1.0.

Table 2: Host Descriptions

Figure 1: Setup

Abstract
This document is intended to assist people with
implementation of IPv6 with Nokia IP Appliances,
Check Point FireWall-1, Linux and Windows. The
ultimate goal of this is to get the reader started with
IPv6, setting up a network and examining the
relations between all the components.

Theory
This section covers some of the basic theory of IPv6,
the differences between v4 and v6, as well as some
interesting facts.

Why IPv6
We're running out of IP addresses in the world - that's
a fact. IPv4 was intended to be able to give everyone a
live IP address. This, of course, is not the case.

We started running out of live addresses to give
everyone so we introduced Network Address
Translation (NAT) to let people hide multiple private IP
addresses behind one live IP address. Although most
people would consider this a viable solution, it's really
more of a stop-gap than a full blown solution. Our
“everyone has a live IP” model is now broken.

Bob Hinden and Steven Deering created RFC 2460
which is the base model for IPv6 and a lot has been
expanded in the time from when they created the RFC
to IPv6 implementation today.

Let's start with making correlations between IPv4 and
IPv6 so the migration won't be as hard.

Examples IPv4 IPv6

IP Address
(example)

10.20.30.40 fec0:c0ff:ee::01

Subnet Masks /8 ~ /32 /3 ~ /128

who-has ARP Neighbor
Solicitation

Address
Ranges (total) 4,228,250,625 3.40E+038

Table 3: Examples of IPv4 vs. IPv6

The most noticeable difference is the large amount of
addresses available to IPv6 over IPv4. Again, those are

just a few examples to whet your appetite for
knowledge.

Just like it's popular predecessor, IPv4, IPv6 still uses IP
addresses, subnet masks and other similar utilities as
well as routing protocols (which we'll take a look at
later). Let's start with IP addresses as they will be most
prevalent in our work.

IP Addresses
With IPv6, we move from 32-bit addressing to 128-bit
addressing. As such, we need a new way to define our
IP addresses as decimal just doesn't cut it. So, we use
hexadecimal instead. Hexadecimal addresses start at 0
and move to through to the letter f. Here's our chart:

Decimal Hexadecimal

0 0

… …

9 9

10 A

11 B

12 C

13 D

14 E

15 F

Table 4: Decimal and Hexadecimal Equivalents

That's great, but how about the actual structuring of
the address? Here's an expanded example from RFC
2732:

FEDC:BA98:7654:3210:FEDC:BA98:7654:3210

This is a fully expanded IPv6 IP address. So, why do I
keep using the word expanded? Check this out:

If you have an IP address of, say:

FEC0:C0FF:EE01:0000:0000:0000:0000:0001

you can omit the groups of zeros to read:

FEC0:C0FF:EE01::1

Notice the double colon in place of the groups of zeros
from the previous IP address. There is one limitation
to this trick which is that you can only do this once per
IP address. At no one point in any given IPv6 IP

 2

White Paper: Push to Talk Technology March 2005

address will you see two sets of double colon's. Also,
preceding zeros can be omitted as long as nothing
else precedes them within the same block.

IP Prefixes
Now, just like IPv4, we can't just start picking out IP
addresses to use wherever we want because of
conflicts, subnets and other such obstacles. To be able
to choose our IP addresses, we need to examine the
prefixes available to us and select the one(s) which
will correspond to our needs. What exactly does that
mean? Well, for instance, you wouldn't use 10/8 on a
routable network as that network is intended for
Hide-NAT use only

Prefixes are the first part of the IPv6 address and tells
us a lot about the IP address in question. These are
similar to the first octet of an IPv4 address. For
instance, if your IPv4 address starts with 224.x.y.z, you
know it's a multicast IP address. Or if it starts with
127.x.y.z, you know it's a loopback. Let's check out
some of the prefixes we will come across in our
journey. This is not a complete list of all prefixes!

Prefix Description IPv4 version
(or similar)

fe80 ~ febf Link-Local
Address.

Packet will never
leave the router.

None.

fec0 ~ feff Site-Local Address.

Private Range IP
addresses.

10.0.0.0/8

192.168.0.0/16

2001 Global-Unicast

(Live IP Address)

1.2.3.4

ffxy (Where
xy is a
number)

Multicast. 224.0.0.0/8

3ffe 6bone address. None.

::ffff:w.x.y.z IPv4 Compatible
Address.

Native.

Table 5: Sample of some IPv6 Prefixes

Now that's interesting. We're starting to understand
how IP addresses are formed and we have these cool

things called prefixes which tell us what kind of IP
address we're dealing with.

IP Subnets
Before going on to the next section, one quick note
about subnets. In the IPv6 world, we use the slash
notation for our subnet designators. You could use the
dotted notation (there's nothing wrong with that) if
you wanted to; however, if you're not a masochist, I
would avoid it as your hand will likely cramp before
you reach a broadcast address. Here are some
examples of prefix subnets:

A live, assigned IP Address

2001:5c0:8452::/48 –

A Site-Local (Hide NAT) Address

fec0::/16 –

/111 could be dotted to

 ffff:ffff:ffff:ffff:ffff:ffff:fffe:0

Implementation
Now that we have a basic understanding of what IPv6
looks like, let's work on getting your network setup.
First, sit down and plan your network. It doesn't have
to be fancy, but you should know what you want to
accomplish with your setup.

Now comes the not so exciting part…

Setup
1. Install your operating systems, hook up the

cables, install your patches and ensure basic
IPv4 connectivity. I am going to place two
limitations on you at this point:

Do not install Check Point
FireWall-1 on your Nokia
Appliance just yet. We'll get to
that later.

If you are using Windows XP,
do not install SP2

Okay, so now you've got Whiterabbit and
Cheshire setup with Tweedledee and
Tweedledum setup in a VRRP pair. (Note : You

should not use Provider-1 for IPv6 and
Check Point).

2. Install your management station on one of
these two computers

3. Create your Check Point rulebase as you
would like them. Again, for this environment,
you have to statically NAT your management
station so that you can successfully push
policy to Madhatter.

4. Test your IPv4 connection:

a. Can you browse the Internet?

b. Is Check Point working properly for
logging?

5. Give it the once-over and make sure. Go
ahead; I'll wait.

Oh, you're back already; That was fast. Now, let's do
some IPv6'ing which is why you're here, right?
Madhatter, in my case, is running Nokia IPSO 3.8.1b028
with Check Point NGFP4 R55p. As a limitation,
Check Point does not support control connections over
IPv6 which is why we need the IPv4 address on the
external and also why we statically NAT'd our
management station.

Configuring Nokia IPSO
First thing's first...

1. Open your favourite web-browser and
connect to Madhatter

2. Logging in as Admin. Go into the IPv6
configuration area and Logical Interfaces.

3. Turn on, and Activate the interfaces you want
to use for IPv6.

4. Open their respective Logical Interface and
assign them their proper IPv6 addresses. If
you are setting this up for an “internal only”
network, you should use Site-Local addresses
(fec0~feff) – If your ISP supports IPv6 or if you
are otherwise setting up a “live” network, you
should use your assigned Global Unicast IP
address.

This is what you should see once you have configured
your interfaces, IP addresses and subnet masks on
your Nokia appliance. For the time being, just ignore
the tun0c0 interface because it's special and will have
it's own section later on in the document.

Next, we need to ensure that everyone can talk to one
another and, for that, we need Neighbor Discovery.

1. Go back to the main IPv6 configuration page
and select this option.

2. Under Global Neighbor Discovery Settings:

a. Queue Limit: 1

b. Unicast Retry Limit: 3

c. Multicast Retry Limit: 4

d. Duplicate Address Detection Retry
Limit: 3

This ensures that when the interface comes online, it
will send out a total of three retry detections for
Unicast addressing as well as Multicast and DAD. Let's
take a closer look at DAD, shall we?

Duplicate Address Detection, or DAD, is IPv6's way of
checking for duplicate Link-Local addresses. As we
know, Link-Local addressing is also known as Stateless
Auto configuration, kinda' like DHCP but not, and for

Figure 2: IPv6 Configuration and Logical Interfaces

Figure 3: Neighbor Discovery

 4

White Paper: Push to Talk Technology March 2005

this to work, we need to ensure that there are no
other Link-Local addresses the same as ours. If there
are, we need to be manually configured.

Once we have this setup, we should look at routing.

1. Go into the Static Routes area for IPv6.

2. Add any Static Routes and (if possible at this
time) a default gateway for your Nokia
appliance.

If you want to use a dynamic routing protocol, we can
set that up now as well. I am using RIP for my IPv6
hosts and routers to learn and update their routing
tables. RIP is an older protocol, a little slower but very
easy to configure and understand. Here's a quick
rundown on how it works: Every route has a metric
from 1 to 16 where 16 is a dead route, timed out or
otherwise not used. Every hop a RIP packet takes will
add 1 to the effective metric to propagate routes up to
16 where it stops being used.

Turn RIPng on for the interfaces you have configured.
From here, all we have to do is add a metric for the
route propagation as the default (for some reason) is
0 which means that these routes will never be used.
Add a 1 for the metrics, Apply and Save your changes.
Done and done. RIPng will be examined in more detail
later on through packet captures.

Great... Now Madhatter is setup but how are we
supposed to configure the Redqueen and Old_110? If
you are installing from the Boot Manager, you will
need an IPv4 FTP server for access to the Nokia
IPSO.tgz file.

1. Once complete, reboot the machine, give it a
hostname, however, when asked how you
would like to configure it, select VT-100
browser using Lynx.

2. Wait until you have the Login: prompt for
Nokia IPSO and login as Admin.

3. Once in, run the command lynx to start the
text-only browser.

4. Use the arrow keys to navigate, space to go to
the next page and [ENTER] to toggle switches
and radio buttons. Make your way to the IPv6
configuration area and configure an interface
with Neighbor Discovery.

5. Once this is complete, we can now do the rest
through Voyager by connecting from
Whiterabbit (configured below) with Mozilla
Firefox.

Configuring Linux
Log into your Linux machine as root. If you don't have
IPv6 statically built into the kernel, you will need to
load the module.

1. At the prompt, type insmod ipv6.

2. Once done, run ifconfig -a to get the logical
listings for your ethernet devices (Mine only
has eth0 as a real network device).

3. The command ifconfig eth0 add
2001:5c0:8452:4::1234:4321/96 will add the IP
address 2001:5c0:8452:4::1234:4321 with a
subnet length of /96 to the eth0 device.

4. Once this has been entered, run ifconfig eth0
and you should now see your IPv6
information listed here.

If RIPng doesn't propagate to your Linux machine
automatically, or if you want to add any Static Routes
(or a default gateway), you can use the following:
route -A inet6 add default gw 2001:5c0:8452:4::ad:ad
which will add a default gateway pointing to the
directly connected interface of Madhatter.

Configuring Windows
On your Windows machine, double-check to ensure
that the only network adapter with IPv6 checked in is
the one you are going to use for IPv6. For instance, I
have two Ethernet adapters in my Windows 2000
machine; One is strictly for IPv4 and the other is for
IPv6. Next, make sure you have the IPv6 developer
pack for Windows.

1. Go into your Network Control Panel and
rename them appropriately (I called mine
IPv4 and IPv6, go figure...).

2. Then, go into the one called IPv4, and uncheck
the IPv6 box.

3. Open up a command prompt and type ipv6 if
which will give you a listing of your IPv6
interfaces.

4. Look for the logical number for your Local
Area Connection corresponding to your IPv6
NIC (For this example, mine is 5).

5. Run ipv6 adu 5/2001:5c0:8452:5::1234:4321
and hit Enter. This tells Windows that you
want to configure an IPv6 address on
interface 5 and the IP address appended to
the end of it.

If RIPng doesn't propagate to your Windows machine
automatically, or if you want to add any Static Routes

(or a default gateway), you can use the following: ipv6
rtu 4/2001:5c0:8452:5::1111:1111 which will add a
default gateway pointing to the directly connected
Virtual interface of the VRRP pair of Redqueen and
Old_110.

 Traffic Captures
Now that we have our network setup, let's take a
closer look at IPv6 packets and what they have inside
of them.

Starting off nice and easy, we'll examine ICMP Echo
Requests and Echo Replies before moving on.

Here we have ICMP(128) which is an Echo Request sent
from Whiterabbit to Cheshire. The main two areas we
want to examine are Layers three and four. Layer
three shows us our Source and Destination IP
addresses, the Hop Limit for the packet and the IP
version we are using. Inside Layer four we can see the
ICMPv6 code for the request.

As should be expected, here we see the ICMP Echo
Reply. The Source and Destination addresses have
reversed (as they should) and the ICMPv6 code
changed to 129. This may not be the most exciting but
it helps to see how things are working on a low-level.

This packet, which is also an ICMPv6 packet, is from
Cheshire's Link-Local address (fe80::260:f8ff:fe01:c0)
soliciting for a neighbour. This traffic (and
subsequently Neighbor Discovery) is handled at the

Figure 4: ICMP Echo Request

Figure 5: ICMP Echo Reply

Figure 6: Neighbor Solicitation

 6

White Paper: Push to Talk Technology March 2005

Link-Local level instead of the Site-Local, Global
Unicast or others because neighbors are just that:
Neighbors on the same network. In the event we were
using Link-Local addresses only for an ad-hoc network,
we want to ensure that we can find out who's beside
us. If we're using any addresses above Link-Local, any
Neighbor Solicitation/Discovery will just be dealt with
at the Link-Local level.

This is ICMP/136 and now we can see some of the flags
that are set. This is a Solicited Router which will force
the receiver to update any cached Link-Layer
addresses by setting the Override flag.

Remember how I said that we would cover RIPng
when we got to packet captures? Well, guess what's
on the next page? RIPng... In fact, a really big picture
of RIPng.

In the packet above, we can see UDP/521 being sent to
a weird looking address of ff02::9. If we reference the
little chart I made about prefixes in the first part of the
document, we know that this is a multicast address.
The address we are seeing is all-routers (ff02::) and
the host-bit identifier of 9 indicates RIPng routers.
Each network listed has a metric assigned to it. When
we setup RIPng, we started with a metric of 1 and, for
every hop, we add another number.

Check Point FireWall-1
I won't go through the motions of step-by-step'ing
you through the installation of Check Point FireWall-1.
I will, however, point out that you need to ensure you
have an IPv6 license so that you can create and modify
IPv6 objects. I'll let you do all of that now.

Figure 7: Neighbor Advertisement

Figure 8: UDP/521 - RIPng

Once installed and licensed properly, let's start by
creating objects for all of our networks and IP
addresses. Use the image below to reference my lab
setup...

Since this is in a controlled lab environment, my
security is rather lax on this specific firewall. The first
thing I did was create network objects for all of my
IPv6 subnets being used. You can see what it looks like
below...

This is just like setting an IPv4 network in the sense
that you do not set the host-bit identifier and we have
a subnet (Prefix length in this case). Next on the list is
creating host objects. The important thing to
remember is that we have two IP addresses (at a
minimum) for each host: Link-Local and (other).

Here you can see my Global Unicast address for eth-
s3p1c0 on Madhatter. Although it's not pictured here, I
have also created a Link-Local address object for all of
my interfaces and grouped them together.

These objects can be used in the rulebase just like any
other objects you would normally place in a rulebase.
There are some limitations with Check Point and IPv6:

• Currently, your topology cannot have IPv6 in
it. Therefore, IPv6 and Anti-Spoofing don't
work together.

• NAT-PT is not supported. Honestly, with all the
IPv6 addresses out there, who's going to need
it?

• Rules must only have IPv6 or IPv4 only in the
rules. For instance, you can't mix an object
this is IPv4 with another that is IPv6 in the
same rule. Why? I don't know.

SmartView Tracker
You can also use SmartView Tracker to see any logs for
IPv6. Take a look at the following screenshot:

In the top frame, you have to select the IPv6 Source
and Destination as it is not enabled by default. After
that, it's just like looking at IPv4 logs but with IPv6
traffic. As a side note, IP/58 going to the multicast of
ff02::1 are Router Solicitation and Discovery packets
being used for Multicast Listener Discovery (MLD) so
that hosts wishing to receive multicast are able to do
so.

State Table Information
In all honesty, I haven't got this all figured out but
here is what I do know. ^_^

Figure 9: Check Point firewall rules

Figure 10: IPv6 Network Properties

Figure 11: IPv6 Host (Interface) Properties

Figure 12: SmartView Tracker

 8

White Paper: Push to Talk Technology March 2005

I ran a program to generate a SYN/SYN-ACK/ACK
connection:

From: [WhiteRabbit]

To [Tupac-Amaru {tun0c1:GU}]

Once this connection was established, I ran "fw6 tab -t
ipv6_conversion_table -u" on [Madhatter] to examine
the traffic. Please note that LL=Link-Local, GU=Global
Unicast, (MH)=Madhatter, (TA)=Tupac-Amaru,
(WR)=WhiteRabbit, (C)=Connected directly,
(O1)=Old_110 and (RQ)=RedQueen. You can safely
ignore any and all (O1) and (RQ) entries as they are
just propagated from RIPng on my other networks.

Table 6: Check Point state table information

[root@madhatterv6 log]# fw6 tab -t ipv6_conversion_table -u

localhost:

-------- ipv6_conversion_table --------

dynamic, id 8119, attributes: keep, sync, expires 1, limit 50000, hashsize 32768

, free function 971800f4 0

<000080fe, 00000000, ff8ea002, 672120fe; 00000001; 3136/3600> # LL of eth-s1p1c0 (RQ)

<17230573> -> <c0050120, 01005284, 00000000, ad00ad00> (00000000) # GU of tun0c0 (MH)

<7f000001> -> <00000000, 00000000, 00000000, 00000000> (00000000) # No idea // RIPng (?)

<1e130a55> -> <000080fe, 00000000, 57cfa8c0, 0a6fcf0a> (00000000) # LL of tun0c0 (MH)

<1bada925> -> <000080fe, 00000000, 0a6fcf0a, 57cfa8c0> (00000000) # LL of tun0c0 (TA)

<000002ff, 00000000, 00000000, 09000000; 00000008; 1996/3600> # RIPng (ff02::9)

<14d3b435> -> <000080fe, 00000000, ff8ea002, ce1720fe> (00000000) # LL of eth-s1p1c0 (O1)

<14d3b435> -> <000080fe, 00000000, ff8ea002, ce1720fe> (00000000) # LL of eth-s1p1c0 (O1)

<c0050120, 04005284, 00000000, 21433412; 00000002; 3590/3600> # GU of eth0 (WR) // SRC IP

<12b55ad7> -> <000080fe, 00000000, ff8ea002, 692120fe> (00000000) # LL of eth-s3p1c0 (RQ)

<1609d791> -> <c0050120, 01005284, 00000000, 40044004> (00000000) # GU of tun0c0 (TA) // DST IP

<c0050120, 01005284, 00000000, ad00ad00; 7fffffff> # GU of tun0c0 (MH)

<c0050120, 03005284, 00000000, ad00ad00; 7fffffff> # GU of eth-s3p1c0 (MH)

<c0050120, 01005284, 00000000, 40044004; 00000002; 3590/3600> # GU of tun0c0 (TA) // DST IP

<000080fe, 00000000, ff8ea002, 5cd608fe; 7fffffff> # LL of eth-s4p1c0 (MH)

<00000000, 00000000, 00000000, 00000000; 7fffffff> # No idea // RIPng (?)

<10000001> -> <000080fe, 00000000, ff8ea002, 58d608fe> (00000000) # LL of eth-s3p1c0 (MH)

<10010dc7> -> <c0050120, 03005284, 00000000, ad00ad00> (00000000) # GU of eth-s3p1c0 (MH)

<000080fe, 00000000, 57cfa8c0, 0a6fcf0a; 7fffffff> # LL of tun0c0 (MH)

<1c5983f7> -> <000080fe, 00000000, ff8ea002, 5cd608fe> (00000000) # LL of eth-s4p1c0 (MH)

<000080fe, 00000000, ff8ea002, 692120fe; 00000001; 3136/3600> # LL of eth-s3p1c0 (RQ)

<000080fe, 00000000, 0a6fcf0a, 57cfa8c0; 00000001; 3244/3600> # LL of tun0c0 (TA)

<000080fe, 00000000, ff8ea002, 58d608fe; 7fffffff> # LL of eth-s3p1c0 (MH)

<000002ff, 00000000, 00000000, 09000000; 00000008; 1996/3600> # RIPng (ff02::9)

<c0050120, 04005284, 00000000, ad00ad00; 7fffffff> # GU of eth-s4p1c0 (MH)

<135937c5> -> <c0050120, 04005284, 00000000, ad00ad00> (00000000) # GU of eth-s4p1c0 (MH)

<16055df1> -> <c0050120, 04005284, 00000000, 21433412> (00000000) # GU of eth0 (WR) //SRC IP

<1ab86027> -> <000080fe, 00000000, ff8ea002, 672120fe> (00000000) # LL of eth-s1p1c0 (RQ)

 2

White Paper: Push to Talk Technology March 2005

As you can see, there are still some pieces of
information that I have not solved yet. :) For instance, I
cannot find out where the Source and Destination Port
information is contained. (I used SPort
4096(dec)/1000(hex) and DPort 8443(dec)/20fb(hex)
for this test).

Notice how Check Point mangles the IP addresses and
moves pieces around? I haven't been able to figure
that out or get a definitive answer about it. Oh well...

Before moving on, let's look at the service that I've
created in my rulebase called “IPv6-over-IPv4” which,
is just like it's namesake... Sending IPv6 traffic across
IPv4 networks. For this, we use IP/41 as our service
which we need to create manually.

You may be asking yourself when and why you would
need to use this. Well, if you're using a tunnel broker
on your residential connection (this will be covered
later on) or if you want to create point-to-point
tunnels with IPv6 over IPv4. I think it's time for a
segue...

Point-To-Point Tunnels
So, you've got IPv6 going back and forth from
workstation to workstation through your internal
network. Good job. Now, how about something a little
trickier.

Do you remember at the start of this paper I said I had
an IP440 as well? Guess what it's purpose is? Point-to-
Point Tunnel. (Not too hard to guess as this is the title

of the section, eh?) However, to get to the Nokia
IP440, I have to cross two IPv4-only subnets which
may seem like quite the daunting task.

For this, I am using Madhatter to establish the tunnel
to the IP440 machine. The IP440 has a total of four
interfaces listed below:

• eth-s1p1c0 – 192.168.207.87
• eth-s1p2c0 – Live IP address (Not listed for

security reasons)
• eth-s1p3c0 – 2001:5c0:8452:2::440:440
• eth-s1p4c0 – 172.16.16.50

To get to the IP440 from my subnet, I have to go from
10.207.111.0/24 to 192.168.207.0/24 and none of the
intermediate devices support IPv6. So, as mentioned,
we are going to setup a direct IPv6 PtP tunnel to get
this to work.

IPv6 supports the transfer of packets across IPv4 in
tunnels and clouds; The former is what we will be
examining here. When IPv6 is encapsulated within
IPv4, it uses IP/41 to accomplish this. A (very) basic
figure of encapsulation is here:

Packet to then tunnel entry point

[IPv6 Header | Payload....]

Packet leaving the tunnel

[IPv4 Header | IPv6 Header | Payload....]

So, let's start getting our IP440 ready for the tunnel. If
you haven't already set up the IP440 for it's
designated purpose, you should do that now. Also,
add the IPv4 interfaces to it and ensure that routing
works okay. Once all of this has been verified, pick an
interface to host the IPv6-only network behind it (I
used eth-s1p3c0), configure the interface and the
subsequent network behind it. Ensure routing works
here as well (Basically, just go through all the steps we
went through during the earlier parts of this
document).

Now, log into Voyager on the IP440, go into the IPv6
Configuration section and select IPv6 in IPv4 Tunnels.

Figure 13: New IP Service – IP/41

Interesting Side Note: This is a screenshot of
Doormouse's X Server through VNC over IPv6 only! :)

You can see here that most of the information you will
be required to enter is straightforward: Enter the Local
IPv4 address and the Remote IPv4 address. Done. The
next step was to go to Madhatter and configure the
same thing but with the IP addresses reversed
(obviously). Last, but certainly not least, is routing. I
enabled RIPng on the tun0c0 interfaces of each Nokia
appliance and all the routing was propagated through
the tunnel.

If you are going to configure a tunnel with a Linux
machine, observe the following considerations...

1. The command “ip tunnel add tun440 mode sit
remote 192.168.207.87 local 192.168.0.4 ttl
255” will create a Simple Interface Transition
device with the two IPv4 addresses listed.

2. Next, “ip link set tun440 up” will turn our
device on.

3. Assign a special Link-Local address to the
device. Here's the breakdown of it.

ip addr add
fe80::<hex_of>:<remote_IP>:<hex_of>:<local_IP>/64 dev
<device>

which, for this example, would be seen as

ip addr add fe80::c0a8:cf57:c0a8:cf57:4/64 dev tun440

VRRPv3 for IPv6
Virtual Router Redundancy Protocol (VRRP) is a
protocol that is used for high availability on networks.
For instance, if router 'A' goes down, router 'B' (who is
standing by) will take over the job. They use Virtual IP
addresses (VIP) for clients to use and use Priorities for
failing over. Here's a quick run-down if you've never
used VRRP before...

• Router 'A' has a Priority of 100 with a Delta of
10.

• Router 'B' has a Priority of 95 and a Delta of
10.

• Router 'A' continually sends it's Priority level
to a multicast address.

• If an interface goes down, the Delta is
subtracted from the Priority for a new Priority
(100 – 10 = 90).

• Router 'B' notices that it has the higher
priority now and takes over (95 > 90).

It's really quite simple when everything works
properly which is why I'm writing this section now.

VRRPv3 is used for IPv6 networks and functions in the
same way as it's IPv4 counterpart with a few extra
features which we'll get to soon.

First, reference my network diagram and take note of
the two routers called “Redqueen” and “old110”.
Notice how they each have their own IP addresses but
converge to a single address on each side. Our clients
will use this as their default gateway instead of the
physical address. Let's start setting it up, shall we?

For this to work, you will have to ensure you are using
(at least) Nokia IPSO 3.8.1 or higher. Log into
Redqueen and go to the IPv6 configuration area. We
will need to create a Virtual Router ID (VRID) for each
interface. On eth-s1p1c0, let's create VRID “1” and on
eth-s3p1c0, let's call it VRID “2”. Nice and simple. Apply
your changes and take a look at the following
screenshot:

Figure 14: IPv6in IPv4 Tunnels – Nokia IPSO Configuration

 4

White Paper: Push to Talk Technology March 2005

FYI: The only interface you can (really) see is eth-
s1p1c0 and only the name is cut off from the
screenshot. Everything else of importance is still
viewable.

Wow! There's a whole lot of stuff in there, eh? If
you've used VRRP before, most of it should look
familiar however there are two new options from
IPv4: Preempt Mode and Accept Mode, both of which
we'll cover. In the mean time, let's get VRRP up and
running.

In the Priority area, we are going to list the default
priority for the interface. If you only have two routers
in the VRRP cluster, setting the Primary to 100 and the
Backup to 95 is usually a safe bet.

The Hello Interval is how often VRRP packets are sent
out to the multicast address. The time used to be in
seconds but is now listed in centiseconds so 100
equals 1 full second.

The VMAC mode option is how you would like the
Virtual MAC address handled by the VRRP cluster. The
main reason people change this from VRRP to Static is
for compatibility with some switches and routers. If
you don't have any issues, you should leave it at VRRP.

Preempt Mode and Accept Mode will be discussed in
detail later on in this section. For now, set them both
to “Enabled”.

Now you should be prompted for a “Backup Address”.
(I don't know why they just don't call it the “VIP
Address” but that's just semantics. -e.d.) This address is
going to be your VIP for the cluster. First, you must
backup your Link-Local addresses. Enter in a Virtual IP
address for you Link-Local addresses now. We'll get to

Site-Local (or Global Unicast if you're live) in a
moment.

Next, you will be prompted to monitor an interface.
This is what makes VRRP work like a charm. This
interface (that we're working on) will monitor any
other interfaces you specify and, if they go down, a full
fail-over occurs. Otherwise, just one interface will fail-
over and you may end up with asymmetric routing.
Select the drop-down menu and select eth-s3p1c0 to
monitor.

Press Apply and you will notice that a Priority Delta
box has appeared next to the Monitor Interface
selection. In here put in the number 10. This is the
number that will be subtracted from the default
Priority for the new, fail-over Priority.

Also, we can add another “Backup Address” on this
interface. Since we already have our Link-Local
addresses in there, let's add our Site-Local (or Global
Unicast if you're live) into the box. Apply and Save your
changes.

If all has gone well, you should now have VRRPv3
setup on your routers and, in the event one goes
down, the other will take over. Tell your clients to use
the Virtual IP address (Backup Addresses) for their
default gateways.

Well, I did promise to talk about those two new
features: Preempt Mode and Accept Mode, so here we
go...

Accept Mode

Accept Mode, which is disabled by default, determines
whether or not the cluster will allow direct
connections to the VIP address. For most people,
having this set to “Enabled” is going to be their best
option as they will most likely be using this as a
gateway router for clients to connect to another
network. This is like the IPv4 checkbox in Nokia IPSO
VRRP that says “Accept connections to the Virtual IP
address”.

Preempt Mode
Preempt Mode, however, is completely new to the
protocol. Preempt Mode is Enabled by default which,
again, is a good thing for most people. Let's say that
Router 'B' is in Master State with a Priority of 95 and
Router 'A' comes online with a Priority of 100; With
Preempt Mode Enabled, Router 'A' will take over as
Master status and Router 'B' will demote itself to
Backup State. Why would you not want this? Let's say
you need to do some work on Router 'A'
(upgrading/configuring/whatevering) but don't want

Figure 15: VRRPv3 – Nokia IPSO Configuration

to take it out of production in the event that Router 'B'
fails. You lower the Priority on Router 'A' so now it's in
Backup State; Then, you turn Preempt Mode off on
both of them and, lastly, you re-prioritize Router 'A'
back to 100 and do your work. Now, Router 'B' (with a
lower Priority) is routing all your traffic and Router 'A'
(with a higher Priority) will take over only if Router 'B'
fails.

Another good reason to disable Preempt Mode is if
your VRRP kicks in before your firewall software.
Router 'A' goes down (for whatever reason) and
Router 'B' takes over as it should. When Router 'A'
boots back up, VRRP fires up during the OS loading
stage which will take over as Master right away
however your firewall software hasn't loaded yet

leaving your network unprotected and probably
unroutable for a period of time. Once this happens,
your phone starts ringing off the hook with users not
being able to go anywhere and that's never fun.

The multicast address for VRRP (IPv4) is 224.0.0.18 and
for IPv6 it's ff02::12 so make sure your security rules
allow for communication to and from these hosts or
else you'll end up with two routers in Master state.

Real-Life Example
By now, I'm sure you're thinking to yourself: This is
great but how do I incorporate this in a production
environment? Let's get to it and we'll have you
IPv6'ing live on the 'Net in no time flat.

Figure 16: Example of my Home Network

I hope you understand why I've blurred out the IPv4
addresses on the inside and outside. Sure, it won't
take much to figure out what they are, but I like the
sense of security with it. :)

As you can see, my main desktop PC (Alice) is running
Mandrake Linux 10.1 Official (2.6.8-1-custom). My
server (who we'll call Frank) is running Red Hat
Enterprise Linux (2.4.21-4.EL) and Check Point NGFP4
R55.

When setting up your IPv6 at home, you will need to
find out some information from your Internet Service
Provider (ISP). Most of them do not offer native IPv6
support so we're going to have to use a Tunnel Broker.
A Tunnel Broker is a site who will offer

an IPv6-in-IPv4 Point-to-Point tunnel with you. There
are quite a few to choose from but I use Hexago
(www.hexago.com) for a few reasons: They're stable,
they have a nice client to use on Linux and other
operating systems and, finally, they're Canadian.
Wooo! No matter who you choose to tunnel with, you
will probably end up getting a /64 subnet assigned to
you as well as a /127 Point-to-Point tunnel address. If
you go with Hexago, sign-up for a free account to get
a network assigned to you; If you login anonymously,
you will only get a host IP address.

Get it all setup and install your client (if your broker
provided you one) and finally run the client. You
should now have an sit0 interface on your
server/router. This, if you remember from above, is
what we used on Whiterabbit when we setup our
tunnel to the IP440. This is the same idea but with
Global-Unicast addresses. First, try and ping6 the other
end of your tunnel. If you can do that, then try to
ping6 an actual IPv6 website. You may have to use the
-I flag to specify an interface if your routing hasn't
been applied yet.

If you've used the Hexago client, you will have had to
specify an interface for which your /64 network will be
based off. I chose eth0 which is my internal interface
so that I could have my client computers obtain an
IPv6 address from Frank. This is done with radv(d) on
Linux – When your IPv6 network module loads, it will
query for any RA servers to offer an IP address and,
since Frank has an entire /64 network, he gets the UID
from the card and generates Alice an IP address. Cool,
huh?

Once you have this all setup on your client PC, try and
ping6 the remote tunnel end to see if it's all working.
Check your routing, security rules and tunnel broker
client configuration if anything isn't working. If it is,
head over to http://www.ipv6.bieringer.de and you

should see a dancing penguin (Yes, a dancing
penguin). Can you see it? If so, you've successfully
accessed an IPv6-only site! That's right, this page
cannot be accessed over IPv4. Wanna' see other
animals dance? Head over to

http://[2001:200:0:8002:203:47ff:fea5:3085]/ and look
at the dancing turtle. Look at it go... Wheee!

Basic Troubleshooting
So, something's gone wrong or maybe not even
working in the first place. Where to start? First and
foremost, tcpdump is your best friend. tcpdump has a
sister named Ethereal who is, actually, a bit prettier
than her brother but they both get the job done.

If you're using tcpdump, one of the little tricks you pick
up is using grep in conjunction with it. For instance, if
you just run tcpdump -i eth0 and hit [ENTER], you'll
probably end-up with a tonne of traffic that you don't
care about at the moment. Let's say you're seeing a lot
of VRRP advertisements and some v4 arp who-has that
are just filling the screen up. Try: tcpdump -i eth0 |
grep -v VRRP | grep -v arp which will exclude those
regex (REgular EXpressions) after -v.

Check for any firewall rules (or, if you didn't listen to
me and are using a router, any ACL's) which may be
restricting access to the packets you are trying to send
back and forth.

Cables – Do you know how much troubleshooting can
be solved by accurately checking the cables? Check the
cables. Make a loopback connecter as well to test
ports. They're easy as pie to build (although I can't
cook to save my life) and they will tell you when a port
has gone bad – (lo + RJ-45 Port) – LED = Dead Port.

TCP stacks – Can you ping6 ::1 at all? If you get an error
about “Cannot Assign Requested Address” then you
need to insmod ipv6.

Take a break. Decompress and play some games for a
bit. Unwind and go for a walk. Do whatever it is that
clears your mind.

Last but not least, K.I.S.S. - Keep It Simple, Stupid.
Although I'm not trying to call anyone stupid, keeping
it simple will save you from many headaches later on
especially with the Pointy-Haired Boss (Thanks Dilbert
– e.d.).

 2

White Paper: Push to Talk Technology March 2005

About the Author
My handle is Gr@ve_Rose, not the most 31337 handle
to have, but I like it. I've been using computers since I
was about six years old on my Dad's Commodore 64
where I started hacking. I used to play games and
change the BASIC code to go to the last level after the
opening scene. ^_^ After moving to Ottawa, we got
our first x86 computer; It was a 386/33 with 8 whole
megs of RAM and a thirty meg hard disk. It cost us
roughly two thousand dollars. We eventually started
getting new computers and I kept playing with them
and learning more about them. After high school, I
started working with Digital Equipment Company
(DEC) who are infamous with their Alpha chips. I
worked in the MIS department and that's where my
love of Unix started. I quickly ran out and bought a
copy of Red Hat 4.2 from EB and installed it on an old
486. Thus, the journey started...

I currently work with Nokia security appliances and
Check Point FireWall-1 which, if you ask me, is a lot of
fun. It helps keep me on my toes, always learning
more and gives me legitimate reasons to try and crack
networks (Only my own and others with permission).
I've been published thrice in 2600 – The Hacker
Quarterly and am continuing to submit articles to help
benefit the hacker community. Please see
http://www.catb.org/~esr/jargon/html/H/hacker.html and
http://www.catb.org/~esr/jargon/html/H/hacker-ethic.html
for what I mean.

I hope that this document has helped start you on
your path of IPv6. Learn what you can, share it with
others and continue to learn; The process never stops.

About Nokia
Nokia is the world leader in mobile communications, driving the growth and sustainability of the broader
mobility industry. Nokia is dedicated to enhancing people's lives and productivity by providing easy-to-use
and secure products like mobile phones, and solutions for imaging, games, media, mobile network
operators and businesses. Nokia is a broadly held company with listings on five major exchanges.

For more information, please visit http://www.nokia.com/forbusiness

Americas
Nokia

313 Fairchild Drive, Mountain View, CA 94043
Tel: 1 877 997 9199

Email: mobile.business.americas@nokia.com

Europe, Middle East and Africa
Nokia

Nokia House, Summit Avenue
Southwood, Hampshire, GU14 ONG, UK

Tel UK: +44 161 601 8908
Tel France: +33 170 708 166

Email: mobile.business.emea@nokia.com

Asia Pacific
Nokia

438B Alexandra Road
#07-00 Alexandra Technopark, Singapore 119968

Tel: +65 6588 3364
Email: mobile.business.apac@nokia.com

www.nokia.com

Copyright © 2005 Nokia. All rights reserved. Nokia and Nokia Connecting People are registered trademarks of Nokia Corporation. Other trademarks mentioned are the
property of their respective owners. Nokia operates a policy of continuous development. Therefore we reserve the right to make changes and improvements to any of
the products described in this document without prior notice. Under no circumstances shall Nokia be responsible for any loss of data or income or any direct, special,
incidental, consequential or indirect damages howsoever caused.

